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Abstrac t  

In this work we analyse combinatorical aspects of the Schwinger-Dyson equation. This leads to 
generalizations of Wick's theorems on integrals with Gaussian weight to a larger class of weights 
which we call sub-Gaussian. Examples of sub-Gaussian contractions are that of Kac-Moody or Vi- 
rasoro type, although the concept of a sub-Gaussian weight does not refer a priori to two-dimensional 
field theory. The generalization was chosen in such a way that the contraction rules become a com- 
binatorical way of solving the Schwinger-Dyson equation. In a still more general setting we prove 
a relation between solutions of  the Schwinger-Dyson equation and a map N, which in the Gaussian 
case reduces to normal ordering. Furthermore, we give a number of results concerning contractions 
of composite insertions. 
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1. I n t r o d u c t i o n  

1.1. The Schwinger-Dyson equation 

In this paper  we will  be concerned  with the S c h w i n g e r - D y s o n  equat ion:  

Vi,f l ( O i ( S ) f )  = l ( O i f ) ,  which for fixed S : I~ D --+ E is the equat ion satisfied by 
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the functional 

f ~ l ( f )  := f fe-S dxl. . .  dx D , 
RD 

where f and S are restricted such that it is well defined, and such that upon partial integration 
boundary terms are zero: 2 

o= f o~(e-Sf)dx'" 'D= f e-S(--Oi(S)f +Oif)dxl'"D=I(Oif--OiS). 

The interest of this equation is that it can be generalized to infinite dimensions by replacing Oi 
by functional derivation. Thus, positive solutions of this equation can be used as guidelines 

to construct infinite-dimensional measures. We set ( f )  := I ( f ) / I  (l). 

1.2. Aim and overview 

The above is a motivation to study the Schwinger-Dyson equation in general; in this 

article we will restrict our attention to the following points: 
(i) The first aim of this work is to look for conditions for the action S under which the 

Schwinger-Dyson equation has a unique solution up to normalization. 

For example, Gaussian weights have a unique solution, but as we will see there is more. 
In order to be able to solve the Schwinger-Dyson equation by combinatorics, we will 
impose a restriction on the possible actions that we consider, namely that they satisfy 

a differential equation of the form 

aiajs = gij --k ~.~(OkS) -k = J(aks)(a,s) + . . . ,  

stopping after a finite number of terms. Obviously quadratic actions are in this class. 
The interest of this equation comes from considering the Schwinger-Dyson equation 
in new variables Oi S; It then reads: 

n 

(Oil ( S ) . . .  Oin (S))  = Z ( O i 2  (S)..Oil 8ik (S)..Oin (S)) 
k=2 

so that if O2S is expressible in OS, then at least the equation closes. 
(ii) Next we aim to extend the notion of normal ordering to non-Gaussian weights in 

such a way that it is naturally associated to such weights, since when using functional 
integration for geometric purposes, it is essential to only use natural constructions. 
Our definition will be by induction, using the new variables Si := 8i S, as follows: 
N(1) := 1, and 

O 
N(Sio. .Sin) := SioN(Sil . .Sin)  - Oxio N(Si l  . .Si,) .  

2 We will stick to the practice, in the context of functional integration, of calling this formula the Schwinger- 
Dyson equation, although the above formula was already given for functional integrals by Feynman in [5, 

formula 45]. Another often seen formulation is {Ji - (OiS)(O/OJ)}Z(J) = 0, by setting Z(J) := l(e Jixi ). 
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In the Gaussian case this reduces to usual 3 normal ordering. The Schwinger-Dyson 

equations leads to the above non-Gaussian extension in the sense that solutions of  the 

Schwinger-Dyson equation can be expressed as a linear function of  N - I .  We will 

generalize this remark to the case where the vector fields Oi are replaced by a not 

necessarily Abelian Lie algebra of  vector fields on a manifold. It is in this non-Abelian 

case that non-Gaussian examples are known. 

(iii) Ordering the possible differential equations for S by the highest occurring power of  ~ S, 

the first equation is 0i 0j S = gij, i.e. leading to Gaussian weights; the next one, at most 

linear in 0 S will be called sub-Gaussian. We will prove a number of generalizations of 

Wick 's  theorems [ 16] to that case; the interest of such theorems being that they provide 

an algebraic setting for solving the Schwinger-Dyson equation, a setting in which the 

fields q~(x) are just  symbols instead of  operator-valued distributions acting on Hilbert 

spaces. Unlike other suggestions for non-Gaussian Wick rules, our derivation is not 

restricted to a specific underlying dimension. These Wick rules will be illustrated 

through examples from two-dimensional field theory. 

(iv) Finally we will look for theorems concerning "composite insertions", by which we 

will mean factors in expressions between brackets (-) which are not first deriva- 

tives of S: The fact that in (Oi(S)sj..sn) we may eliminate Oi(S) in favour of the 

sum of  terms with Oisj relies on the special form of  OiS; in general it will not be 

possible to find a derivation D such that ( X ( S ) Y ( S ) f )  = (Dr) .  However it may 

happen sometimes, if we choose the vector fields X and Y in the right way. We 

will be proving some theorems concerning the conditions under which this hap- 

pens. 

The organization of  the article is as follows: In Section 2 we will give precise definitions 

of  what we mean by the non-Abelian sub-Gaussian case, and prove a number of  theorems 

concerning them. Instead of  speaking of actions S we will phrase everything in terms of 

contractions [- ~ .], which is a formulation better suited to study the Schwinger-Dyson 

equation from the combinatorical  point of  view. In that section we will also review a rel- 

atively well-known algebra as an example of  a non-Abelian contraction: The Kac -Moody  

algebra. In Section 3 we will be concerned with composite insertions, and we will see how 

the solution of the Schwinger-Dyson equation for one system can be helpful to solve the 

Schwinger-Dyson for another one. We will treat a classical example where this is the case 

in detail, the Sugawara construction. The example is not new: What  we want to emphasize 

is their relation with the Schwinger-Dyson equation, and the use of  sub-Gaussian calculus. 

In Section 4, we will be concerned with the proof  in the case of  possibly non-commuting 

vector fields that the solutions (.) of  the Schwinger-Dyson equation are given by Z N  l 

where Z is known explicitly. 

3 Gaussian normal ordering was introduced in 17]. A number of definitions can be found for other cases 
besides the Gaussian case, see for example: [ 13; 10, formula 7b; 3, formula 4; 17, formula 61. However none 
of these definitions is directly in terms of the action S. 
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2. Contraction algebras 

In this section we will introduce an algebraic structure which we call a contraction 

algebra. It is an abstraction of  an action S with the property that 02S can be expressed 

as a polynomial  in OS, i.e. satisfying a differential equation of  the form OiOjS = gij q- 

Fi~ (Ok S) + A~J (Ok S)(Or S) + . . . .  Indeed, to such an identity we can associate the following 

binary operation on the vector fields Oi: 

kl [0 i ~> Oj] := gi j  -}- l-'i~Ok -t- Ai jOkOl  -~- ' '  " 

with values in symmetric polynomials  in the symbols Oi. This operation satisfies properties 

that we will use as axioms for the definition of  contraction algebra. 

The advantage of  using the notion of  a contraction [. t~ .] over that of an action S is that 

[- ~ -] contains the only necessary data for the combinatorical solutions we are looking for; 

it may happen that a contraction is known but that the corresponding action is not, since 

easy differential equations can have difficult solutions. Also, as we will see, the statement 

of generalized Wick theorems is easier in this language. 

Given this contraction, we can now altogether omit S from the Schwinger-Dyson equation 

(Oil ( S )  . . . Oin ( S )  ) = Y~=2 (0i2 ( S). .Oil  Oik ( S)..Oi,, ( S )  ) and just  write 

n 

(Oil . . .  Oi,,) = Z ( O i 2 . . [ O i l  t> Oik]..Oi,), 
k=2 

which is the equation we will analyse. 

Next we will need a generalization of the contraction to the case where the vector 

fields Oi are replaced by a basis {Ta} of a not necessarily Abelian Lie algebra of  vec- 

tor fields. In that case, the contraction roughly means that TaTbS is expressed in terms 

of  TaS, but not exactly: When using general vector fields X on some manifold M, we 

can no more use the fact that the measure dx l . .  dx n on ~n is invariant under the vec- 

tor fields Oi that we used before. Therefore there is no point in that case in splitting 

off the weight e - s  from the volume form Iz = e - s  dx l . .  dx n, so that we will only talk 

about the volume form # from now on. By taking Lie derivatives of  the integrand, the 

Schwinger-Dyson equation then reads: l ( X ( f )  + f V ( X ) )  = 0, where the divergence 

is defined by L x #  = V ( X ) # .  When specializing to /z = e - S d x l . . d x  n and X = Oi, 

we see that V(X)  = - X ( S ) ,  so instead of  assuming that TaTb(S) can be expressed as 

a polynomial  in Tc(S), we will rather assume that T~V(Tb) is uniquely expressible in 

g(Tc) 'S.  

Given such a divergence V we may define a map [. t> .] : L ® L -+ Sym(L ); [X t> Y] : =  

- X  (V (Y)), which we extend on the right by derivations to Sym (L). Thus in this notation one 

may think of X E Sym(L)  as X(S) .  This map will automatically satisfy indentities which 

are stated in Definition l(i) below, by the general property of divergences that V([X, Y]) = 

X ( V ( Y ) )  - Y ( V ( X ) ) .  The sub-Gaussian case, i.e. where 02S was at most linear in OS, now 

corresponds to the contraction being a map L ® L ~ K @ L <_ S y m ( L ) ( K  = scalars), 

since L corresponds to the first derivatives of  S. 
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Def in i t ion  1. We define a number  of  special contract ion algebras: 

(i) A polynomia l  contract ion algebra is a Lie  a lgebra  L with a map  [. ~, -] : L ® L --+ 

Sym(L),  extended by derivat ions on the right to Sym(L),  which satisfies 

[X c> Y] - [Y ~, X] = [X, YI c L < Sym(L) ,  

[ x  ~ [Y :, z ] ]  - [Y t> [ x  ~, Z l l  = [IX, Y] ~, Zl .  

(ii) It is cal led Gaussian if  [. ~, .1 : L ® L -+  K = Sym°(L)  (=scalars). 

(iii) A sub-Gaussian contract ion algebra is one in which [. ~ .] : L ® L ~ K • L = 

S.vml°'ll(L). In that case, we extend [. ~, .] by [1 ~> 1] : =  [1 > X] : =  0, which makes  

K • L into a pre-Lie  algebra. 4 

(iv) Normal  ordering is the map N : Sym(L)  -+ Sym(L),  defined by N ( I )  : =  1, and by 

n 

l ~ X~N(X~../q..X,) [X~ ~. N(X~..~'~..X,,)]. N ( X l  . . .  X , )  : =  - 
n i=1 

(v) The contract ion is said to be non-degenera te  iff  its normal  ordering is invertible. 

(vi) in that case we set Sl * s2 : =  N - l  (N(s l )N(s2 ) )  which is an associat ive symmetr ic  

product:  Sym( L ) ® Sym( L ) --+ Sym( L ). 

(vii) For  maps  (.) : Sym(L)  --+ K,  we now define the S c h w i n g e r - D y s o n  equat ion to be 

the equat ion ¥XcL:sE&m(L)(Xs) = ([X ~ s]). 

2.1. Sub-Gaussian contraction algebras 

This section contains  theorems valid only for sub-Gaussian algebras. A s imple  example  of  

a sub-Gaussian contract ion is the one-d imens iona l  Abel ian  Lie  a lgebra with basis e lement  

e, and contract ion [e ~, e] : =  2.1 + / , r e  for some scalars 2. and # .  We will see later that 

inf ini te-dimensional  examples  are well  known in different guise. 

T h e o r e m  2. Set [ X o Y] := ½IX ~, Y] + l [ y ~ X I. In sub-Gaussian algebras the following 
holds: 5 

(i) [[X t> Y] o Z] + [Y o [X ~, Z]] - IX ~- [Y o Z]] = ½([[Y ~- X] ~, Z] + [[Z ~- Xl ~- r l ) ,  

(ii) N ( I X  ~, Y]) = [X ~, Y], 

(iii) N ( [ X  ~, Y ] Z )  = IX ~, Y ] Z  - [[X ~, Y] o Z], 

(iv) IX > N ( Y Z ) ]  = N ( [ X  ~ Y IZ  + Y I X  ~, Zl  + ½[[Y c, X] E> Z] + ½[[z ~- Xl ~ Y]). 

4 1 wish to thank C.D.D. Neumann for pointing out the following to me: a pre-Lie algebra is a vectorspace 
with a bilinear operation [. :-.] satisfying [a t~ [b t, c l] - [b ~ [a ~- c]l ----- l la ~- b l - [b t> a] t> c l, see [6, formula 61. 
In that case [a, b] "= [a ~, b] - [b t> a] is a Lie composition. 

5 For other non-Gaussian wick theorems, valid however only in the context of two-dimensional contormal 
field theory, see I6, Section 5;1, Appendix A1. 
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(i) This is an identity which holds in any pre-Lie algebra: 

2LHS = [[X > Y] > Z] + [Z > [Xt> Y]] + [Y > [X > Z]] + [IX > Z] > Y] 

- I X  ~, [Y ~, Z ] ]  - [ X  > [ Z  > Y]] 

= [[Y > X] > Z] + [Z > [X ~- Y]] + [Y > [X ~ Z]] + [[Z > X] > Y] 

- [Y > [ X  > Z ] ]  - [ Z  > I X  > Y]]  

= [[Y > X] > Z] + [[Z > X] > Y]. 

(ii) [ X >  Y] c Sym[°'ll(L).  

(iii) Idem, together with the symmetfized definition of  N. 

(iv) LHS = [X t> Y Z  - [Y o Z]] 

= [X > Y]Z  + Y[X  > Z] [X > [Y o Z]] 

= N ( [ X  > Y]Z)  4- N ( Y [ X  > Z]) 

4- [[X > Y] o Z] 4- [Y o [X > Z]] - [X > [Y o Z]] 

= R H S .  

This completes the proof. [] 

Note that Theorem 2(iv) is a generalization of  the Gaussian fact that [X > N ( Y Z ) ]  = 

N ( [ X  > YZ]) .  In the next section we will make use of  this formula to handle expressions 

like N ( J ( z ) J ( z ) ) .  A more common use of  the formula is in Gaussian form: It is then the 

essential statement for proving that in the Gaussian case (N(XI  X2)N(Y j  Y2)) say, can be 

expanded in terms of  contractions between X's  and Y's only; Indeed, 

(N(XI X2)N(YI Y2)) 

---- ((Xl N(X2) - [X1 > N(X2)] )N(YI  II2)) 

= (N(X2)[XI  > N(Y1Y2)]) = ( N ( X 2 ) N ( [ X I  > YIY2])). 

Theorem 3 (Sub-Gaussian reconstruction). Let L be finite-dimensional Lie algebra. Let 

(.) : Sym(L ) --+ K be the solution of  the Schwinger-Dyson equation determined by a sub- 
Gaussian contraction on L. Then this contraction can be reconstructed frorn (.) i f  cij  := 

( Ti Tj ) is invertible ( Ti a basis f o r  L) as follows: Let cij k :---- ( Ti Tj Tic) and IT / , / ) ]  = :  f,.~ Tk. 

Then the contraction is given by ITi ~, 7)] = gij 4- f'i~Tk, where 

gij : :  cij, P/~ :=  ½gkl(cij, + fiT g m l -  f in~gjm-  ff~gim). 

Proof  The proof is similar to the uniqueness proof of  the Levi-Civith connection, and was 
inspired by work of  Kutasov [ 12, formula 2]: We know that the contraction is sub-Gaussian, 
so it is of  the form [Ti > 7)] -=- gij 4- ['ikTk, and it remains to prove the above relations. 
Indeed, 
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cij = (T//))  = ([T/> Tj]> = (gij + NiCjTc) -= gij. 

Further, we have 

Cijk ([Ti t> Tj]Tk) + (~[T/t> Tk]) m . m = ~_ F'ij( .mk q -C jmF ' i k .  

Using the fact that Fi~ - Fj~ = f/~, since Fi} Tk - Fjki Tk = [ Ti ~. Tj ] - [ Tj ~ Ti ] = IT i, Tj ], 
we arrive at 

Cijk q-Cj ik  - - C k i j =  l-'iTCmk "]- l"inkCjm q- q m c m k  q- q ~ C i m  -- l-'kmcmj - l ' ~ C i m  

m m 
= ( ~ i 7  q- q T ) C m k  q- f i k C j m  q- f j k C i m  

m m . m = ~2r~ 7 fq )Cmk + f~kqm + qkCim 

So that 

2Fi~glk ----- cijk + Cjik --  Ckij -'J- fijm Cm k _ fikm CJ m _ f j kC im  . 

2.2. An example from conformal field theory: The Kac-Moody algebra 

Theorem 4. The following almost everywhere defined contraction satisfies the pre-Lie 
property and therefore defines a sub-Gaussian contraction algebra: The algebra is associ- 
ated to a Lie algebra L with invariant symmetric bilinear from h; it is defined by generating 
symbols J ( X, z), linear in X E L, where z c C, with contraction: 

h(X,  Y) J([X,  Y], ( )  
[J(X,  z) ~. J(Y,  ¢)1 .-- ~ - -  ~.-~ 1 + z - ( 

Proof The pre-Lie property is equivalent to the statement that [[a ~ b] ~> c] + [b ~ [a > c]J is 
symmetric in a and b. Note that this way of proving it will automatically give an expression 

for the three-point function: (abe) = ([a ~> b]c) + (b[a ~ el) = / [ [ a  ~, b] ~ c] + [b ~ [a ~ cll). 

L e m m a  5. Following this remark, we first prove 

[[J(XI ,Zl )~ ,  J (X2,  z2)]> J(X3,  z 3 ) ] + [ J ( X 2 ,  z 2 ) > [ J ( X I , z l ) >  J(X3,z3)]]  [] 

h([Xl ,  X2], X3) -]- J((Zl - z3)[[XI, X2], X3] q- (Zl - z2)[X2, [XI, X3]], 7.3) 

(Zl -- Z2)(Zl -- Z3)(Z2 -- Z3) 

Proof 

[ J ( [ X l '  X 2 ] ' z 2 ) > J ( X 3 ,  z 3 ) ] +  [J.(X2, z2) t > 
L H S = L  ~-ll -- ~22) 

J([X1,  X3], z3) 

(Zl - z3) 

= t(h) + t ( J ) ,  
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and 

where t (h) denotes the terms involving h, and t ( J )  those with J.  

h ( [ X l ,  X2] ,  X3)  h ( X 2 ,  [ X I ,  X3] )  
t (h) = + 

(Zl --  Z2)(Z2 --  Z3) 2 (Zl --  Z3)(Z2 -- Z3) 2 

h([X1,X2],X3) (~1 1_ 1 ) 

= ~ 2 - - ~ 2  z2 z l - z 3  

h([Xj ,  X2] ,  X 3 )  Z2 - z3 

(Z2 - z3)  2 (Zl - Z2)(Zl  - Z3) 

h ( [ X j ,  X2] ,  X3)  

(Zl - z2) (Zl  - Z3)(Z2 - z 3 ) '  

t ( J )  = 
J([[XI,X2],X3],Z3) J([X2,[XI,X3]],Z3) + 

(Zl --Z2)(Z2--Z3) (Zl --Z3)(Z2--Z3) 
J ( ( z l  - Z a ) [ [ X l ,  X2] ,  X3]  -~- (Zl - Z2) [X2 ,  [ X I ,  X3] ] ,  Z3) 

which proves the lemma. 

(Zl --  Z2)(Zl --  Z3)(Z2 -- Z3) 

[] 

ProofofTheorem4(cont inued) .  It remains to prove that the result o fLemma 5 is symmetric 

under the exchange of  1 and 2. This is clear for the term with h, and for the J term, it suffices 

to prove that 

(Zl --  Z3) [ [X1 ,  X2] ,  X3]  + (Zl - Z2 ) [X2 ,  [ X I ,  X3]]  -t- (1 ~ 2) = 0. 

Indeed, using the Jacobi identity: 

LHS ---- {(zj - z3)  - (z2 - z3 )} [ [X1 ,  X21, X3]  

+ (Zl - z2 ){ [X2 ,  [ X I ,  X3]]  - [ X I ,  [X2,  X3]]} 

= (Zl --  Z 2 ) [ [ X I ,  X2] ,  X3]  -'1- (Zl - Z2) [ [X2 ,  X I ] ,  X3]  = 0. [] 

R e m a r k  6. In the same way, the reader may check that the Virasoro algebra also defines 

a sub-Gaussian contraction; for c c R, this is an algebra generated by symbols 0kT(z), 

where k ~ N and z ~ C. The contraction reads 

c /2  2T( ( )  OT(() 
[T(z) ~- T( ( ) ]  .-- - -  i + - -  q- - -  

(z - ~)4 (z - ~-)2 (z - ~')' 

k l together with [0~T(z) t~ OlT(w)] :=  O z 0to[T(z ) ~ T(w)]. 

Definition 7. A module for a pre-Lie algebra is defined to be a module for the induced 
Lie-algebra. The reader may check that the following operations [2,11 ] define modules for 
the Virasoro and Kac-Moody algebras: 

[ l ( z )  ~-q~(~)] . -  (z ()2 + (z ~) [ J ( x ,  z) ~, 4~(v, ()]  . -  
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Here, h is a number, ff E C and v runs linearly over a representation space of  the Lie algebra 

L. In that case the symbol ~b is called a primary field for T or J ,  and the number h is called 

its conformal weight. 

The reader who is familiar with meromorphic operator products in two-dimensional 

conformal field theory will note that in the above examples, the contraction equals the 

singular part of  the operator product expansion (OPE). That both the contraction and the 

OPE have the same singular part can be understood if (abc) = (la ~ b]c) + b[a ~ c]) holds, 

by comparing the singularities between a and b. Thus, a simple guess for contractions is 

the singular part of  the operator product. 

This does not mean that the category of  contraction algebras is obtained from that of  the 

vertex operator algebras (VOAs) by forgetting the information contained in the regular part 

of the OPE: First, VOAs are designed especially for two-dimensional field theory, whereas 

contraction algebras are defined in any dimension. Next, as motivated by functional integral 

expressions, contraction algebras distinguish between fundamental fields (elements of  L) 

and composite fields (elements of Sym(L)) ,  a distinction which is not made in VOAs. 

Sometimes vertex operators are associated to a contraction algebra, for example starting 

from the Gaussian contraction [q~(x) > q~(y)] : :  In tx - y/ with x ~ ~2, one can define 
P the composite fields V(/~,..,l,,)(x) :=  N((0/~ q~)(x)..(Ol,,q~)(x)eip4~Ix)), using the multi-index 

notation Oj :=  Oj~ ..Ojk, which are closed under Taylor expansion of  the product in S~,m(L): 

For example, using that for Gaussian contractions N (e x ) N  (e Y) : N ( e X +  Y+lx Y) ), one 

recovers 

P 1 
(vIP)+q (v) + i p (x  - y)iV(~/~q(y) + O((x - v)2)). 

Ix - yl pq " 

3. Schwinger-Dyson morphisms 

Given a contraction algebra L, and a solution (-) of  the Schwinger-Dyson equation, it may 

happen that there are higher-order elements r in S y m ( L )  that behave in a way similar to those 

of L in the sense that there is an operation [r i ~.r j ] such that (rl . . .  rn ) = Y~j (r2.. [rl ~,r j l..r,, ). 

This section will be concerned with this situation. 

3. I. Definitions and theorems on Schwinger-Dyson morphisms 

Definition 8. Let L I and L2 be two contraction algebras. Then by a Schwinger-Dyson 
morphism we mean a map M : Ll  ~ Sym(L2)  (extended by M ( X Y )  = M ( X ) M ( Y ) )  

such that if a linear map (')2 : Sym(L2)  ~ K satisfies the Schwinger-Dyson equation for 

L2 then the map (')1 :=  (M(.))2 satisfies the Schwinger-Dyson equation for L I. 
A contraction algebra L is said to have a free field realization iff there exists an injective 

Schwinger-Dyson morphism from L to a Gaussian contraction algebra. 
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The reader who is familiar with conformal field theory may wish to keep in mind the 

Sugawara map 

1 

M(T(z) )  .-- 2k + 2c ~ N ( J ( T a '  z)J(Ta, z)), 

in which we will look form our point of  view in a moment. In the next theorem we will 

derive a criterion to check whether a map is Schwinger-Dyson morphism. One may think 

of  E as the Virasoro algebra and of  L as the Kac -Moody  algebra. 

Defini t ion 9. By a sum of  two contraction algebras L l and L2, we mean a contraction 

algebra structure on the vectorspace L l • L2 such that the restrictions of  the contraction 

to either component  reduce to the original contractions on L I and L2. By an extension of  

a contraction algebra L we mean a sum E ~ L such that [E ~ L] C L and [L ~- E] C L. 

The reader may check that the following defines an extension of  the Kac -Moody  algebra 

with derivatives Ok J by the Virasoro algebra: 

J ( X , ( )  J ( X , ( )  O J ( X , ( )  
[J(X, z) ~ T ( ( ) ]  --  (z ( )~ ;  [T(z)  ~- J(X,  ( ) ]  - -  (z ()------5 + 

- - z - (  

T h e o r e m  10. Let E ~ L be an extension of a sub-Gaussian contraction algebra L, and let 

M : E ~ L --+ Sym(L) satisfy: 

(i) MIL = id (in what follows we will write M(X)  = X for X E L); 

(ii) Vee E ( M ( e ) ) L = O for (') L a solution of the Schwinger-Dyson equation; 

( i i i )  Va~E@L;e~EM([a t> el) = [a ~ M(e)] .  

Then M is a Schwinger-Dyson morphism. 

Proof First note that since M I L = i d  we can strengthen the last property of  M to e c E ~ L, 

and by the derivation property of  [. ~- .] to e 6 Sym(E ~ L). Now let (.) be a solution of  the 

Schwinger-Dyson equation for L. We have toprove that ¥aeEeL;~eSym~E*L~ (M(a)M(s))  = 

(M([a  ~, s])).  I f a  6 L, we have LHS = (aM(s)) = ([a ~ M(s) ] )  = (M([a  ~, s])),  by the 

strengthened property of  M. It remains to prove the identity for a = e ~ E. We will first 

prove that for s E Sym(L) we have (M(e)s) = ([e ~- s]). (Remember  [e ~- s] E Sym(L) 

because of  the definition of  an extension). We will prove this by induction on the degree of  

s. I f s  --- 1, this follows from (M(e)) = 0. So let us assume that the identity was proved for 
s. We will prove it for Xs with X ~ L: 

(M(e)Xs) = ([X ~- M(e)]s) + (M(e)[X ~, s]) 

= (M([X t> e])s) + (M(e)[X ~ s]). 

Using that [X ~. e] ~ L and [X ~. s] has degree lower or equal to s since L is sub-Gaussian 

s o  t h a t  w e  can use induction, this equals: 

([[X ~, e] ~, s] + [e t> [X ~- s]]) 

= ([[e ~- X] ~ s] + [X ~ [e ~- s]]) 
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= {[e ~, X]s + X[e ~, s]) = ([e ~ Xs]}. 

We have now proved the identity for Xs,  and therefore for s ~ Sym(L).  It remains to prove 

it for s E Sym(E @ L). Indeed this follows from the fact that for s E Sym(E @ L) we 

still have M(s)  E Sym(L)  for which we may use our weaker result so that {M(e)M(s)}  = 

{[e ~- M(s)])) = {M([e ~- s])), which concludes the proof. [] 

The next theorem is the contraction-algebraic analogue of  the Knizhnik-Zamolodchikov 
equation. 

Theorem 11. Consider two Schwinger-Dyson morphisms obtained from extensions as in 

Theorem 10:MI3 : LI G L3 ~ Sym(L3), and M23 : L2 ~ L3 ---> Sym(L3). Let T E Lj 

be such that MI3(T) = gabM23(N2(Jajb))  where the j a  are in L2, gab is a symmetric" 

matrix, and N is normal ordering. Then for  ¢i E L3 " 

Z { ¢ I  ..([T t> ¢i] -- gab[J a ~ [ jb  ~. ¢i]]).-¢n) 
i 

---- Z gab(el . .[ja ~ ¢i]. .[jb ~ ¢j]..¢,,). 
i•j 

Proof  

~ ( 4 ' ~  ..IT ~, 4,i1..¢,} 
i 

= {M13(T)¢I ..¢n) ----- {M23(JaJ. - [ ja  ~ Jal)¢l  ..¢n) 

---- Z ( M23 ( Ja ) q}l ..[ Ja t> ¢ i ] . . ¢ n )  
i 

= Z{M23(Jalqbl  ..[Ja ~ ¢i1-.¢n} + Z gab (¢1 . . [ j a~  [ jb  ~ ¢i]..¢n). 
i i 

[] 

To recover the usual KZ equation, take L I to be the Virasoro algebra, L2 the Kac-Moody 

algebra of  a Lie algebra L, take the quadratic relation between T(z) 's  and J(z ) ' s  to be 

given by the Sugawara construction, and assume L3 is a module for both Virasoro and 

Kac-Moody in the sense of  Definition 7, i.e with contractions 

_ _  o4~(v, ~) ¢ ( x v ,  ~) 
IT(z) E> ¢(v ,  ~')] . -  h .¢(v ,  ~) + _ _ .  [J (X,  z) ~ ¢(v ,  ~')] . -  - -  

( Z - -  ~-)2 ( Z - -  ~) Z - -  ¢ 

The Knizhnik-Zamolodchikov equation now reads: 

Z ( ¢ ( v l ,  Zl )..([T(~') ~ 4)(vi, z/) ]  
i 

1 
. j a  

2k + 2c v [ (~') t> [Ja(~') ~" ¢(vi ,  Zi)]])..¢(Vn, Zn)} 

1 
= Z 2k + 2c v (~b(Vl, Zl). .[J" t> ¢(vi ,  zi)]..[J, ~ qS(vj, z j )] . .¢(v , ,  z ,)}.  

i :/: j 
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Making fzk d(  act on this equation then gives the usual form 

l ~ 1 (¢(Vl, Zl)..qb(Tavi, Zi)..¢(TaVk, Zk)..¢(Vn, Zn)). 
k + c v ~. zi - zk 

3.2. Details o f  the Sugawara calculation using sub-Gaussian calculus 

In this section we will prove that the Sugawara construction gives a Schwinger-Dyson 

morphism. The calculation is the contraction-algebraic analogue of the usual Sugawara 

construction in operator language. 

Theorem 12. Let L be a finite-dimensional reductive Lie algebra with invariant metric h 

and basis {Ta} such that ad(TaT a) = 2cV idL. For k c R define the Sugawara map from 

the Virasoro algebra to the Kac-Moody algebra o f ( L ,  kh ) as follows: 6 

1 
M ( T ( Z ) )  .-- - -  N ( J ( T  a, z )J(Ta,  z)). 

2k + 2c v 

I f  c = [ k dim( L ) / ( k + cV)] then the Sugawara map is a Schwinger-Dyson morphism. 

Proof. We will check that 

(i) [J(X,  z) ~ M ( T ( ( ) ) ]  = M ( [ J ( X ,  z) ~, T(()] ) ,  

(ii) [T(z) ~ M ( T ( ( ) ) ]  = M([T( z )  ~, T(()] ) .  

Indeed, using that ad ( Ta T a) = 2c V i dL and 

[Ta, Tb]CTb = h (T  c, [Ta, Tb])Tb = h([T c, Ta], Tb)Tb = IT c, T.], 

and using Theorem 2(iv), we get 

(2k + 2cV)[Ja(z) ~, M ( T ( ( ) ) ]  

= [Ja(z) ~" N ( J b ( ( ) J b ( ( ) ) ]  

: N([Ja(z)  ~ Jb ( ( ) ]Jb ( ( )  + Jb(()[Ja(Z)  t~ Jb(()])  

+ I N ( [ [ J b ( ( )  ~" Ja(z)] ~" Jb(()]  + [[Jh(() ~" Ja(Z)] ~" j b ( ( ) ] )  

( {  khab J([Ta, T b ] , ( ) }  IJ ([Tb,  Ta],Z) ] )  
= N 2 ( Z ~ ? ) 2  qt_ Z - - (  j b ( ( )  q_ 1_ ? - - 7  t> j b ( ( ) ]  

2kJa( ( )  
- - - -  + A + B ,  

(Z -- ~-)2 

6 This needs some explanation since [J(z) ~- J(z)] is undefined. We will not use any specific value for this 
contraction however: We will only use formula iv of Theorem 2. This is really a theorem about pre Lie 
algebras P if we define normal ordering to be Sym(P) --+ Sym(P). Thus, to define the above calculus with 
undefined contractions, we go to the universal pre Lie algebra on symbols J(X, z), 1, and impose the relation 
[J(X, z) t~ J(Y, w)] = h(X, Y)/(z - w) 2 + J([X, Y], w)/(z - w) only for z ~ w. Thus, [J(X, z) ~, J(Y. z)] 
remains a symbol. 
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where 

(z - ¢)A = 2N(J([Ta, Tb], ¢)Jb(e,')) = 2N(J(T,. ,  ¢)J([Ta,  TblCT I', ¢)) 

= 2N(J,~(¢)J([T c, 7",,], ¢)) = - A ( z  - ¢) = O, 

and 

B -- z - ( l {  h([Ta'Tb]'Th-~z---~-f2 + J([[Ta'Tb]'Tb]'¢)}z~- ~ = 0 +  

As for the second point: 

2cV J(T,,, ¢) 
(z - ¢)2 

IT(z) > N(J,~(f)Ja(¢))] 

= N(2[T(z) t> Ja(¢)lJ"(¢) + [[&(~') t> T(z)] ~- J " (¢ ) l )  

{2Ja  (¢ ) Ja (¢ )  20J.(()Ja(¢)  
+ 

2 1 
)4N(J,(¢)Ja(¢)) + ( z - ¢  " z - ¢  

ON(Ja(¢)Ja(¢)) 

+ 
1 { khabh ab 

(¢ - z)2 ~ - - ~ S ~  + 

J ( [ T  a, Ta], ¢) 

z - ¢  

= (2k + 2c ~) (~--_-~2 + z -  + - -  
k dim(L) 
( Z  - -  ¢ ) 4  ' 

This proves that the Sugawara construction leads to a Schwinger-Dyson morphism. [] 

3.3. Remarks on higher-dimensional morphisms 

We will now make some general remarks on why it is difficult to find analogous Schwinger- 

Dyson morphisms in higher dimension, i.e. where for every x 6 R n there is a T (x) E Sym (L) 
with properties analogous to T (z) above. 

Recall that a Lagrangian E, when given a classical field y, produces a volume form 

£ ( y )  on some manifold M which can then be integrated to get the action S(V). That given 

such a Lagrangian, to every vector field X on M is associated its Noether current J(X),  
where J(X)(y)  ~ .QIMI-I (M) can be integrated over (IMI - 1)-submanifolds to give the 

charge Q(X) :=  f y(x). Finally that Noether's theorem states that if X is a symmetry 

of  the original Lagrangian, then d J ( X )  is a conserved current in the sense that it can be 
written as a multiple of  the functional derivative 6 £ / 3 y ,  so that if y is a solution of the 

Euler-Lagrange equation 3E/6), = 0, then dJ(X) (y )  = O. 
By putting together the notion of  a conserved current and the Schwinger-Dyson equation 

(where we now take L to be spanned by the functional derivatives 3/Sy (m)), and assuming 
that we are dealing with actions as before where normal ordering N makes sense, we obtain 

the Ward identity. 
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Theorem 13 (Ward identity). Let J be a conserved current for £,, defined on the base 
manifold M except for a few singular points si c M. Let Si be (IMI - 1 ) spheres surrounding 
the si. For xj ~ M, let O(xj) be functionals of the classical field y such that if m ~ n, then 
30 (m) /6y (n )  = O. Further, let Q : =  Z i  fsi N(J) ,  where N denotes normal ordering. 
Then 

J J ~. j ' ¢ j  

where the "contraction" [ Q ~. .] is defined by multiplication 

[Q ~, O(xj)] :=  f N(J )O(x j ) ,  

SJ 

and Sj is a sphere that surrounds xj. 

Proof Let liT/be M with balls B i and Bj removed around the singularities si of J and the 

insertions xj. The difference between the left-hand side and the right-hand side reads: 

aM s - 1 

Since J is conserved, there is an/'~ such that dJ  I m = T~(m)(6£/~y  (m)), so that: 

= f N \  ~y(Fn) i t - i O ( x j )  = ~ I - I O ( x j )  = 0 ,  
1(4 j 1 ~ j 

since X j  ~ ~4. [] 

From the above and recalling the identity (rs) = ([r > s]) holding if r and s are in 

the image of  a Schwinger-Dyson morphism, it is obvious that normal ordered changes of  

Noether symmetries are good candidates to be in such images. Indeed, the examples of  two- 

dimensional conformal field theory are of  this type: Since the vector field X(w) :=  {z P-~ 

( 1 / ( z -  w))8z } is a (complexified) conformal Killing field, every two-dimensional conformal 
field theory allows it locally as a symmetry. The consequence is that using Cauchy's theorem, 

the Noether current density ~z  defined by J (X)  = Tzz Xz dz + T~X ~ d[, can be written as 
a charge: 

1 f Tzz(z)dz f ( X ( w , ~  ( X ( w ) ~  Tz,(w ) . . . . . .  J = Q . 
2Jri z - w \ 2~ri I \ 2rri ] 

11) 113 

Thus, the Ward identity which holds in general for charges now also holds for the cur- 
rent density at a point. This is an aspect which is difficult to realize in higher dimensions: 
Indeed, having symmetry vector fields with poles together with translational symmetry 
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implies an infinite-dimensional symmetry algebra since vector fields with poles at differ- 

ent locations are linearly independent. Thus, Schwinger-Dyson morphisms of  the form 

T(x )  = N ( J ( x ) J ( x ) )  are not to be expected in higher dimension without having infinite- 

dimensional symmetry. 

Note that this, however, is exactly what Johnson and Low [8] tried to do: From their 

investigation of the Jordan construction J ( x )  = N ( ~  ( x ) ~  (x)) in higher dimension, they 

found expressions for the commutators of the J (x) 's which did not satisfy the Jacobi identity. 

The analogoue in our language is that one does not find an operation [J (x)  ~> J(Y)] which 

satisfies the pre-Lie property as in the two-dimensional case. Note the advantage of  our 

approach that it is not logically incorrect not to find such an operation, whereas it is logically 

incorrect to claim to have operators of  which the commutators do not satisfy the Jacobi 

identity. 

4. An existence theorem for solutions of the Schwinger-Dyson equation 

Theorem 14. l f  normal ordering N is invertible, then the Schwinger-Dyson has a unique 

solution up to normalization (.) = Z N  -1, where Z : Sym(L)  ---> K is the projection on 

scalars. 

In this section we will be concerned with proving Theorem 14 for general contractions 

L ® L ~ Sym(L)  with possibly non-Abelian L. Our first aim will be to prove that the 

solution is necessarily given by Z N  - t  . 

Ppvof  o f  Theorem 14 (Uniqueness). Let I satisfy Schwinger-Dyson equation. We will 

prove that VsESym(L)IN(s) = Z ( s ) I ( 1 ) .  So if N is invertible, then I = l ( 1 ) . Z N - l :  For 

deg(s) = O, this equation reads s ! (1) -- s ! (1), and for higher degree, we have: 

n 

1 Z X i N ( X I . . 2 i . . X n )  I N ( X I . . . X n )  = - I  
n 

i=1  

- [ x i  ~, N(X~ . . f ; i . .X , ) ]  = 0 = Z(X~ ..X,,). [] 

Thus, to prove existence it suffices to prove that Z N - I  satisfies the Schwinger-Dyson 

equation, i.e. we have to prove that Z N - I ( X s  - [Xs ~ s]) = O. There will be some 

complications which we will first illustrate in the easiest case s = Y c L: we then have to 

prove that Z N  -1 ( X Y  - [X ~, Y]) = O. Now 

X Y  - IX ~ Y] = N ( X Y )  + ½[X ~ Y] + ½[r ~ X] - IX : ,  Vl = N ( X Y  + ½IY, X]) 

so that indeed Z N - '  (X  Y - [X ~> Y]) = 0. We have to generalize this procedure to arbitrary 

s. Our first step will be to prove the formula for N ( s )  instead of  s, which is the same if N 
is invertible: i.e. we will prove Z N  -1 ( X N ( s )  - [X ~ N(s)])  ---- 0. This version is better 

suited for proof by induction, in view of the definition of  normal ordering. So the question 

is: Given X and s, can we construct R(X ,  s) such that XN(s)  - [X ~ N(s)]  ---- N ( R )  and 
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Z ( R )  = 0? What  we see above is that R(X,  Y) = X Y  + l [ y ,  X]. In Theorm 19 we will 

prove that v = N ( M  + r), where v(X,  s) : =  X N ( s )  - [X ~, N(s)] ,  and M and r are known, 

i.e. we can take R :---- M + r, and the theorem will be proved. 

4.1. Preliminaries on the symmetric algebra o f  a Lie algebra L 

We will be defining maps on Sym(L)  without going through the explicit  symmetrization 

every time. To that end we include the following theorem. It is, say, the statement that 

in symmetric algebras every element of  Symn(V)  can be written as a sum of  nth powers, 

for example 2 X Y  = (X + y)2 _ X 2 _ y2. This will simplify matters when proving that 

Z N -  I ( X N (s ) - [ X ~, N (s ) ) = 0, because we will only prove that Z N -  I ( X N ( yn ) _ [ X r, 

N(yn)] )  = 0, which as we will see is easier. 

T h e o r e m  15 (Polarization). Let V, W be vectorspace, G : V ®n ~ W linear, then there is 

a unique l inearmap Gs : Symn(V)  --+ W such thatVv~vGs(v  n) = G(vn). 

Proof  Existence is evident from the following example: 

1 

crESn 

Next, we have the following formula in Sym(V):  

n!X1 . . . X n  = ~ _ _  ( - l )  n-ISr Xs , 
i 

SC{I  ..... n} 

which is proved by noting that both sides are symmetric and homogeneous polynomials  

which can be divided by X j, so that both sides are equal up to scalar multiplication. To 

determine this factor, we take X1 ---- X2 . . . . .  Xn, and use that )--~=0 ( -  1) n-k k n (n k ) = n ! 

This gives uniqueness, since 

Gs(XI . .Xn)  = Z ( - 1  Xs 
SC{I , . . ,n}  

1 
Z (--1)n-ISIG Xs . [] 

n so{1 ..... n} 

Defini t ion 16. Let L be a Lie algebra. Define the following maps: 

(i) Z : Sym(L)  --+ K < Sym(L),  "zero degree projection". 

(ii) M : L ® Sym(L)  ~ Sym(L); "multiply": 

M ( X  ® s) :=  Xs. 

(iii) S : Sym(L)  --+ L ® Sym(L); "split": 

S(I) :---- 0 ;  S(XI . . .  Xn) : =  --  Xi ~ Xl . .Xi. .Xn. 
n i=1 
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(iv) E : L ® Sym(L)  ~ L ® Sym(L);  " s y m m e t r i z e " :  

1 
E(Xo  ® X l " X n )  "-- : ! 1  ' ~ ( n  -[- E Xa(o) ® Xcr(I)"Xct(n)" 

aESn+l 

(v) r : =  @nrn " L ® Symn(L)  ~ SymIl'nl(L): "res t  t e rm" ,  and  C : =  ~]~n Cn " L ® 

Sym n ( L ) --~ L ® Sym [°'n- I t ( L ) " c o m m u t a t o r  t e rm" ,  induct ive ly  as fol lows:  7 

r (X ,  1) : =  0; C(X ,  1) : =  0, 

C(X ,  yn+l)  .-- n + 1  {[Y, X]  ® yn + y ® r (X ,  yn)}. 
n + 2  

r (X ,  y n + l )  

n + l  
:-- {[Y,X]Y~ + Y r ( X , Y " ) + r ( [ Y , X ] , Y ~ ) + r ( Y , r ( X , Y ~ ) ) } .  

n + 2  

(vi)  Mz : =  M + Zr ;  "mod i f i ed  mul t ip l i ca t ion" .  

(vii)  rrz : =  SMz ,  "pro jec t ion" .  8 

T h e o r e m  17. These maps satisfy the fol lowing properties: 

(i) Mz = M + kr, zrz = SMx,  

( i i )  r = ( M  + r )C ,  

(iii) ]~2 = ]~, 

(iv) E = S M = z r 0 ,  

(v) Z r =  Z M = O ,  

(vi) C S  = O, rS  = O, 

(vii)  fez E = E,  

(vii i)  rc~ = ~.E + ~r~C, 
2 

(ix) zr z ---- rr;~. 

Proof  

(i) By def ini t ion.  

( i i )  r ( X ,  y n + l )  = n + 1 2{[Y, X]Y n + Y r ( S ,  yn) + r([Y, XI,  Y") 
n + 

+ r(Y,  r (X ,  yn) )}  

n + l  
-- n +  2 (M + r ) { [ Y ' X ] ®  Yn + Y ® r ( X ' Y n ) }  

= ( M  + r ) C ( X ,  yn+l) .  

(iii) Lef t  to the reader.  

7 The motivation for the definition of r comes from the proof of Lemma 20: It is chosen in such a way that 
the fifth equality of the proof holds. The definition of C is useful since we then have r = (M + r)C, as 
proved in Theorem 17. 

8 This map with ~. = 1 is used in Theorem 23. In that theorem a condition of the form J = Jzr appears, 
which motivates us to try to prove that rr 2 = rr. This is indeed the case, as is demonstrated in Theorem 17. 
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(iv) By polarization it suffices to prove that E ( X  ® yn)  = S M ( X  ® yn). Indeed: 

1 y n  = LHS -- - -  (X ® + nY  ® X Y  n- l )  S ( X Y  n) ---- RHS. 
( n +  l) 

(v) Z M ( X  ® s) = Z ( X s )  --- 0. Next, we prove by induction on Is[ that Z r ( X ,  s) = O. 

Indeed, Z r ( X ,  1) = Z(0)  = 0; suppose that the identity holds up to degree n. Then 

we have 

Z r ( X ,  yn+ l )  = Z ( M  + r ) C ( X ,  yn+ l )  = ( Z r ) C ( X ,  yn+ l )  = 0 

by induction since C lowers degree. 

(vi) We will prove by induction on Isl that CS(s )  = 0 and rS(s)  = 0. Indeed C S ( I )  = 

C ( 0 ) = 0 ,  r S ( 1 ) = r ( 0 ) = 0 ,  C S ( X ) = C ( X ® I ) = 0 ,  a n d r S ( X ) = r ( X ® I ) = 0 .  

So assume these identities hold up to degree n+l .  Then 

C S ( X  n+2) = C ( X  ® X n+l) = n +_____ll X ® r (X ,  X n) 
n + 2  

_ n + I x  ® r S ( X  n+l) = 0  
n + 2  

and 

r S ( X  n+2) = (M + r ) C S ( X  n+2) = O. 

(vii) rrxE = S ( M  + )~r)E = E 2 + )~SrSM = ]E 2 = E. 

(viii) rex = S ( M  + )~r) = S M  + ) ,S(M + r)C = )~SM + S ( M  + )~r)C = )~E + rrxC. 

(ix) We will prove by induction on Is l that n 2 (X ® s) = rrz (X ® s). Indeed, Jr~ (X ® 1) = 

X ® 1 = n2 (X  ® 1). Next, assume that the identity holds up to degree n, and that 

Isl = n + 1. Then since C lowers degree, we have zr2C(X ® s) = n ~ C ( X  ® s), so 

that 

~r2(X ® s) = nx (ZZ  + rr~C)(X ® s) 

= ~.rrz Z (X ® s) + rr2C(X ® s) 

= ~.E(X ® s) + zr~C(X ® s) 

= 0 . E  + zr~C)(X ® s) = zrx(X ® s). 

This completes the proof. 

4.2. Theorems involving contractions 

Defini t ion 18. Given a polynomial  contraction on L, we def ine the  following maps: N : 

Sym( L ) --~ Sym( L ), "normal ordering", and v : L ® Sym( L ) ~ Sym( L ), inductively as 

follows: N(1)  : =  l ,  and 

1 n 

~_, XiN(Xj..2i..Xn) [Xi ~, N(Xl..YC~..Xn)], N ( X I  . . .  Xn) : =  - 
n i = l  

v (X  ® s) : =  X N ( s )  -- [X ~, N(s)] .  



O. de Mirleau/Journal of Geomet O, and Physics 21 ( 1997) 357-380 375 

The idea underlying the following theorem is as follows: Recall that we want to prove 

that there is an R such that v (X  ® s) = N ( R ( X  @ s)) and Z R  --- 0. In other words, we 

have to rewrite v (X  ® Y ' )  as the N of something, which we are going to try by induction 

on n. So given the fact that there is an r (X ,  Y") such that 

v(X,  yt~) --_ N ( X y n  + r ( X ,  yn)) ,  

we want to construct r (X ,  yn+l) such that it satisfies this equation with n replaced by n + 1. 

In the course of  Lemma 20 we find that v(X,  yn+J) equals 

v(Y, X Y ' )  + N ( Y r ( X ,  Y ' )  + r(Y, r (X ,  yn))  + [y, X]Y" + r([Y, X], Y")). 

So at that stage we have expressed v(X,  yn+l) in terms of the N something and v(Y, XY"  ). 

So it remains to express v(Y, X Y  n) in terms of N(. . )  and v(X, y , ,+l )  in an independent 

way, so that we get two equations 

av(X ,  y n + I ) + b v ( Y ,  X Y n ) =  N(. .) ,  c v ( X , Y " + I ) + d v ( Y ,  X Y " ) =  N(. .) ,  

which we may solve for v(X,  y ,+l  ). This second equation is furnished by Theorem 19(ii), 

which makes the proof possible. The map R = M + r thus defined indeed satisfies Z R = 0, 

by definition. 

T h e o r e m  19. These maps satisfy the following properties: 

(i)  N = v S + Z ,  

(ii) v(Y, X Y  't) -- ( - 1 / ( n  + l ) )v (X ,  Yn+l) T N((n  + 2) / (n  + l ) ) X y n + l ) ,  

(iii) v(X,  y,,+l) = Y.v(X,  Y") - [Y ~, v(X,  Y ' )]  + v([Y, X], Y"), 

(iv) v = N ( M  + r) (this is the main result). 

Proof. 

(i) Since S ( I )  = 0, we have N(1) = (vS + Z)(1) ,  and for higher degree, we have to 

check N(X1 ..Xn) = vS(XI  ..Xn), which is true by definition of S, t, and N. 

(ii) N ( X Y n + l ) = v S ( X Y n + l  ) -  1 (v(X, Y n + I ) + ( n + I ) v ( Y ,  XY'~)) 
n + 2  

=* (n + 2 ) N ( X Y  n+l) - v ( X Y  n+l) = (n + 1)v(Y, XYn) .  

(iii) LHS = X N ( Y  n+l) - [X ~, N ( g ' + l ) ]  

= X Y N ( Y " )  - X [Y  t> N(Yn)] - [X E> YN(Yn)]  + [X ~. [Y t> N(Yn)]] 

= Yv(X ,  yn) _ [y ~, 

+ Y [ X ~  N(yn)]  + 

= Yv (X ,  yn)  _ [y t> 

= R H S .  

X N ( Y ' ) I  - IX ~. Y ] N ( Y ' )  + [[X, Y] ~. N(Yn)] 

[Yt> X ] N ( Y  n ) -  Y[X t> N(Yn)I  + [Y t> [X t> N(Yn)][ 

v(X,  Y ' )]  + [Y, X I N ( Y ' )  - [[Y, X] t> N(Y")I  

(iv) We prove that v (X  ® s) =- N ( M  + r ) ( X  ® s) by induction on n = Is[.n = 0 • 

v(X,  1) = X = N ( X )  = N(X.1  + r (X ,  1)) =-- N ( M  + r ) (X,  1). Assume true up to 

n. Then by polarization it suffices to prove the following. 
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L e m m a  20. v(X, yn+l)  = N(XYn+J + r(X, yn+l)). 

Proof 

v(X, yn+l)  = Yv(X, Yn) - [Y ~, v(X, yn)] + v([Y, XI, yn) 

YN(XY  n + r(X, yn)) _ [y ~, N(XYn + r(X, yn))] 

+ N([Y, X]Y" + r([Y, X], Y")) 

= v(Y, X Y ' )  + v(Y, r(X, Y")) + N([Y, X]Y" + r([Y, X], yn)) 

= v(Y, XYn) + N(Yr(X,  yn) + r(Y, r(X, yn)) + [y, X]yn 

+ r([Y, X], yn)) 

---{n+2r X, ) = v(Y, XY n) + u ~-£--~ ( y n + l )  

_ -1  v(X, yn+l)+ N + 2 x y n +  I + r(X, yn+l ) 
n + l  + 1  n + l  

:=> v(X, yn+J) -= N(Xyn+l + r(X, yn+l)). [] 

4.3. Applications to sub-Gaussian algebras and boundary terms 

In the rest of  this section we will apply some of  the above fromulae to explicitly construct 

the inverse of  normal ordering in the sub-Gaussian case, to give a generalization of the sub- 

Gaussian formula for [X ~, N(YZ)], proved in Theorem 2(iv), and to construct the solution 

of  the Schwinger-Dyson equation with prescribed boundary term. 

Definition 21. Given a sub-Gaussian contraction algebra, we define N : Sym(L) 
Sym(L), and p : (K ~ L) ® Sym(L) ---> Sym(L), inductively by (r(1, s) :=  0). 

/V(I) :=  1, 

/Q(yn+l) :=  y ]~ (yn) + r(Y, 1v (Yn) ) +/~/([Y ~, yn]). 

p(1 , s )  :=  p(X, 1) :=  O, 

p(X, yn+l) :=  [[y t> X] ~, yn] + p([y ~. X], yn) + Yp(X, yn) 

+ r(Y, p(X, yn)) + r(IX ~. Y], yn) + r(Y, [X ~. Y"]). 

Theorem 22. We then have: 
(i) [X ~- N(yn) ]  = N([X ~ yn] + p(X, yn)), 

( i i )  N - j  = f ' .  

Proof 
(i) We will prove this identity by induction on n. For n = 0 it reads 0 ---- 0, so assume it 

to be true up to n, we will now prove it for n + 1 (subscripts indicate corresponding 
terms): 

[X ~. N(yn+1)] - N([X t> yn+l])  



O. de Mirleau/Journal of Geomet O' and Physics 21 (I 997) 357-380 377 

= [X ~. YN(Yn)]  - [X ~. [Y ~. N(yn)]]  - N ( [ X  ~. y ] y n )  _ N ( Y [ X  ~. Y"]) 

= [X~. Y]N(Y" ) I  - [[X. Y ] ~ . N ( y n ) I 2  - [ X ~ .  Y I N ( Y n ) I  

- Y N ( [ X  t> Yn]) 3 + Y[X ~. N(yn)]3  - [Y ~> [X > N(yn)]]4 

+ [[X t> Y] ~. N(Yn)]2 + [Y t> N ( [ X  ~. Y"])]4 

+ N ( r ( [ X  ~. Y], yn))  + N( r (Y ,  IX ~> Y" ])) 

---- [[Y E> X] t> N(yn) ]2  + Y N ( p ( X ,  Yn)) 3 - [Y t> N ( p ( X ,  Yn))]4 

+ N ( r ( [ X  ~. Y], y . )  + r(Y.  [X :. Y"])) 

= N{[[Y E> X] ~- yn] + p ( [ y  ~> X], Y") + Yp(X ,  yn) + r(Y, p ( X ,  yn))  

+ r ( [X  ~. Y], Y")  + r(Y,  IX > Y"])} 

= N ( p ( X ,  yn+l)) .  

( i i )  W e  will prove by induction on n that NN(Y") = NN(Y  n) = yn. Indeed. this is true 

by definition for n = 0 ,  so assume the identities hold up to n, then: 

NfC(Y  n+l ) = N(Y17(Y  n) + r(Y,  N(Y") ) )  + [Y ~, Y"] 

= v(Y, N(Y")) + [Y ~. yn] 

=_ Y N f l ( y n )  _ [y  :> N~/ (yn ) ]  + [y  ~> yn] = yn+l 

Next, to prove f t N =  id, we first prove that A/ is surjective. This follows from 

l~ (y .+ l )  --_ yn+l mod Sym[O'n](L), which in turn follows from the definition, by 

induction on n.  Therefore, for every yn there is an Sn such that yn = ]Q(s , , ) ,  so that 

N N ( Y  n) --- N N N ( s n )  = Al(Sn) = yn 

which proves the identity. []  

The following theorem is motivated by integration over manifolds with boundary: Sup- 

pose we already know integration over the boundary 0M of  a manifold. Then in particular, 

if It is a volume form on M, we know ] : X ® f ~ f o g  f i x l z .  This last association is 

related to the integral over M through the Schwinger-Dyson equation for I : f ~ fM f l z :  

,(v(x)f +x(f))= f Lx(fu)= f dix(fu)-- f fixu=)(X® f). 
M M ?)M 

In algebraic language, this leads us to consider the equation I ( -  Xs  + [X ~. s]) = J ( X  ® s), 

i.e. setting J ( X  ® s) : =  - J ( X  ® N(s ) ) ,  we become interested in the solvability of the 

equation I ( X N ( s )  - IX ~. N(s) ] )  = J ( X  ® s), which is what the following theorem is 

about: 

T h e o r e m  23. Setting Jr :=  S ( M  + r), the fol lowing are equivalent: 

(1) I ( X N ( s )  - [X ~ N(s) ] )  --= J ( X  ® s),  

(2) I N  = J S  + I ( 1 ) Z  and J = Jzr. 
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P r o o f  First, using Theorems 17 and 19, with R := M + r ,  we have the following properties: 

Z R  = 0, S Z  ---- O, v = v S R ,  N = vS  + Z .  We now prove the theorem. By definition, (1) 

is equivalent with I v  = J .  

(1) =:~ (2): I N  = I v S  + I Z  = J S  + I ( I )Z ;  J = I v  = I v S R  = J S R  = JJr. 

(1) ¢:: (2): I v  = l v S R  : I ( N  - Z ) R  = I N R  -- J S R  + I ( I ) Z R  = Jrr + 0 = J .  [] 

If N is invertible, then what we have done is to solve the inhomogeneous linear equation 

I v  = J as I = J S N -1 + I (1) Z N 1, which is expected is of the form Ip + Io, where Ip 

is any solution, and I0 is the general solution of the homogeneous equation. Further, note 
that 7r 2 = Yr, see Theorem 17. 

5. Conclusion 

What we have seen is the following: 

(i) A useful generalization of contractions to non-Gaussian actions S is the second deriva- 

tive of S, written as a polynomial in the first derivatives. In view of the fact that normal 

ordering can be defined in terms of contractions, this leads to a non-Gaussian notion 

of normal ordering independent of underlying dimension. 

(ii) For the Gaussian case, normal ordering is an invertible operation. Invertibility of normal 

ordering is interesting for non-Gaussian integrals too, since in that case the inverse of 

normal ordering is directly related to the solution of the Schwinger-Dyson equation. 

This statement can be generalized to a non-Abelian setting. 

(iii) We defined the notion of a sub-Gaussian weight, for which a number of generalized 

Wick rules can be derived. Examples of sub-Gaussian algebras can be found in two- 

dimensional conformal field theory. 

(iv) We defined the notion of a Schwinger-Dyson morphism which relates solutions of the 

Schwinger-Dyson equations of different contractions, and formulated a criterion to 
check whether a map is such a morphism. 

Our method has been rather different from the usual approach in that we have not used 

operators and Hilbert spaces, but rather a purely symbolic approach; the notion of composite 

operators was now replaced by that Schwinger-Dyson morphisms. In this way we avoided 

the difficulties of operator-valued distributions and the problems encountered by Johnson 

and Low in higher-dimensional current algebra, namely that what they call "commutators" 
of "operators" do not satisfy the Jacobi-identity. 

5.1. Positivity 

We have not touched upon the analysis of the combined problem of the Schwinger- 
Dyson equation and positivity, and we will conclude this article with some remarks in that 
direction. 

The main interest of this combined problem lies in a hypothesis that this problem can 

have at most one solution, the (incomplete) argument being as follows: Let I be a positive 
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solution of the Schwinger-Dyson equation for action S. We wish to communicate the sketch 

of a proof that at least on ~n, I is determined up to a constant factor. Indeed, assume 1 is 

a functional that satisfies the conditions to Riesz' representation theorem. Then there is 

a measure v such that I ( f )  = f f v .  "Divide" this measure by # = dx j . . .  dx n to get 

a positive function, and take the logarithm, so as to get l ( f )  = f f e  Pl~. Since 1 now 

satisfies the Schwinger-Dyson equation for both S and P, we have Vfl(Oi  (S - P ) f )  = 0, 

which by positivity gives Oi(S) = Oi(P), or P = S + c, so that l ( f )  = K. f f e  s# ,  so 

that 1 is determined up to a positive scalar. 

From this remark we conclude that the essential input data for constructing functional 

integrals is a combination (S, C) of an action S, and a normalization condition C. Then 

constructing the functional integral for (S, C) means constructing a positive solution of 

the Schwinger-Dyson equation of S, satisfying the normalization condition C. This nor- 

malization condition may be (1) = 1 but need not always be of that form. For example 

Gaussian fermionic integrals with singular operator A in the action have (1) = 0 by the 

Schwinger-Dyson equation which is obviously incompatible with the above normalization, 

and these integrals are typically normalized by a condition like (~ l . .~n  ~J. .~m) = 1, where 

n = d i m ( k e r ( A ) )  and m : dim(coker(A)) .  Note also that the normalization condition C 

may not respect all symmetries of S, so that the final functional integral may in fact change 

by a scalar under such a symmetry transformation, which is exactly what is usually referred 

to under the name of an anomaly, so that this seems to be a good setting for their study. 
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